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Abstract 

Continuing the (heuristic) analysis of the mathematical structure of the Landau excita- 
tions, we find that in one dimension they may be described by a vector bundle over 
the base space of the boosts. The total space is a direct integral of all irreducible repre- 
sentations (of a given class) of the Galilei group. The existence of an energy-momentum 
spectrum reqnires the action of the boosts to be non-linear. This action can also be 
formulated as a superselection rule. 

Formulation o f  the Problem 

In a previous article with the same title (Sen & Zahavi, 1972) it was 
pointed out that  the Galilei transformation properties of  p and E in the 
low-lying (Landau) excitations in superfluid helium are identical with 
those of  the eigenvalues of  the infinitesimal space and time translation 
operators in the zero-mass representations (Levy-Leblond, 1963, 1971) of  the 
Galilei group (InOnti & Wigner, 1952). As these representations had earlier 
been considered to be of  dubious physical interest (In6nii & Wigner, 1952; 
Wightman, 1962), it was natural to ask whether, apart  f rom the above- 
mentioned identity of  the transformation properties, there existed a deeper 
relationship between these representations and the Landau excitations. The 
previous article implied that the answer was in the affirmative. There was, 
however, a gap in its argument, which was not appreciated by the authors 
at the time of its writing. In this article we point out this gap, examine its 
physical consequences and give a heuristic discussion of  how it is to be 
filled. A detailed mathematical treatment will be presented at a later date. 

The two problems which have to be analysed in this context are concerned 
respectively with localisability and the existence of an energy spectrum. The 
first has been adequately discussed in the previous article, and here we will 
examine only the consequences of  the second. The energy and momentum 
of a Landau excitation are related in the rest frame by 

E = E(p) ,  p = [p[ (1) 
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where the function E(p) is not determined by the invariance group. In an 
inertial frame moving with velocity v, the energy E transforms to E ' ,  
given by 

E '  = E(p)  + p. v (2) 

whereas the momentum remains unchanged: 

p' = p (3) 

Consider the zero-mass zero-helicity irreducible representations D~ of 
the Galilei group. These are labelled by a positive number 2, 2 2 ---pZ for 
any p occurring in D~. We work with 6-normalisable vectors. The repre- 
sentation space o"/g~ of D~ is the linear space of vectors ]p,E) with complex 
coefficients and the scalar product 

(p, EIp ' ,E ' )  -~ 6(p - p') 6 ( E -  E ' )  (4) 

and the ranges of p and E in ~fa are respectively: 

(i) p =-Rpo, Po a fixed vector with po2= 2 z and R a three-dimensional 
rotation; 

(ii) - ~  < E <  ~.  

Since the allowed values of E in ;/fx fill the real line and ~ x  is a linear 
vector space, it is possible to superpose all real values of  E for any p. 

However, in the case of Landau excitations it is an observed fact that the 
energy is f ixed uniquely in the rest frame (and therefore in other frames) by 
the momentum (equation (1)). Superpositions of different energies for the 
same momentum are never realised. We are, of course, disregarding the 
small but finite width AE of the excitation, due to its instability, at finite 
temperatures. It should, however, be remarked that this width is non- 
trivial, because there exists no apriori relationship between it and a momen- 
tum uncertainty Ap. 

However, superposition of  states with different momenta are not for- 
bidden. In the first instance, the quantitative agreement with the specific 
heat formula at low temperatures indicates that it is correct to regard states 
with different p as different states of the same physical entity, the Landau 
excitation.i One would ordinarily expect to be able to superpose different 
states of the same quantum-mechanical entity. Next, Landau excitations 
are necessarily localised in a finite region, which implies that it is possible 
to superpose states with different p to achieve an approximation to a 
spatial 6-function. 

To sum up the discussion so far, it appears that for Landau excitations: 

(i) The Galilei transformation properties of the energy E and momen- 
tum p are the same as those of the eigenvalues of the infinitesimal 
time and space translation operators in a true representation of the 
Galilei group. 

I" The names 'phonon '  and 'roton' refer to different momentum intervals in the 
spectrum of Landau excitations, just as 'violet' and 'red' does for electromagnetic 
radiation. 
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(ii) I t  is physically meaningful to superpose states with different p2. 
(iii) I t  is not physically meaningful to superpose states with the same p 

but different E (apart f rom the width A E  mentioned earlier, which 
we will disregard for the present). 

The restriction (iii) above is essential to give meaning to the concept of  
an energy-momentum spectrum. I f  there is no such restriction on the 
superposition principle, we would be left with a direct integral of true 
representations of  the Galilei group. In such a representation the essential 
feature of  the Landau excitations, namely the energy-momentum spectrum, 
would not be meaningful. 

Thus we have to find a mathematical structure which contains (i), (ii) 
and (iii). Such a structure was described earlier as a 'reducible representa- 
tion with a dispersion law E =  E(p) ' .  However, a more precise charac- 
terisation, in terms of vector bundles, appears to exist. This willbe developed 
in the following for the one-dimensional case. It  appears that the three- 
dimensional case cannot be properly discussed except in a more rigorous 
mathematical treatment. 

Vector Bundles 

A fibre bundle is a triple (K, zc, M} consisting of two topological spaces 
K and M and a continuous map or projection rc f rom K onto M (Hermann, 
1966). K i s  called the total space and M the base space. For any y ~ M, the 
set o f x  ~ Ksuch  that z(x) = y is called thefibre aty .  I t  is denoted by rc-l(y). 
A fibre bundle is a vector bundle if  every fibre is a vector space, That  is, if 
re(x) = y then 7c(ax) = y, and if re(x) = rc(x') = y, then ~(ax + bx') = y, 
where x, x '  ~ K, a, b e • (or C; accordingly we have real or complex vector 
bundles). 

Observe that ax and, for certain x and x',  ax  + bx'  must be meaningful 
(in K) in order to define a vector bundle. However, addition of elements 
f rom two different fibres is not generally defined. Therefore, in order to 
avoid absurdities, an element of  K should belong to one and only one 
fibre. This is ensured by the map zc being a projection. 

Since addition is defined within a fibre but not between different fibres, 
a vector bundle can be visualised as a structure which is linear within a 
fibre but ',non-linear' along the base space. 

Next, we shall devise a method for restricting a vector space to a vector 
bundle. Let xl �9 �9 �9 x,, be reals, x = ( & . . .  x,) a real n-tuple and A the point 
set consisting of these n-tuples. Vector space structures can be imposed on 
A in many different ways. Two of the relevant ones are via the following 
metrics: 

. ( x ,  x ) = (x ,  - x l )  ~ (5) 

t 

6,.(x, x')  = a(x~ - x , ) . . .  ~5(x, - x , )  (6) 
19 
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where 6(x~ - x~) is a Dirac delta. The pair {A, d~(x, x')} is N", the n-dimen- 
sional Euclidean space. We will take the pair {A,6,(x,x')} to be age, the 
(improper) complex Hilbert space spanned by the 8-normalised vectors of 
real arguments in R": 

r t ( x l . . .  x,  lx~.. ,  x , )  = 8,(x, x ) (7) 

The triple {A,d,(x,x'), 6,(x,x')} is a point-set with two different 
topologies defined on it. Now consider an Nm: {B,d,.(y,y')}, m < n, and a 
projection n(N" ~ R") which maps {A,d,(x,x')} onto {B,d,,(y,y')}. The 
fact that n is a projection implies that if x and x' are two distinct points in 
A which are mapped onto the same point y in B, then every point of the 
form ax + bx', a,b e ~ is mapped onto the same y. This mapping induces 
a mapping ag+ -+ R ~ in an obvious manner. If  

t x e  ~ " ) - + ( y ~  R ~ ) 
then 

(iX) E ~g'+) --.'- (y E {~m) 

Notice that x,x '  -+ y implies ax + bx' --> y, and that these two in turn 
imply (i) Ix), Ix') -+y ,  (ii) ~lx) + fllx') -->y, and (iii) l a x + b x  ') -->y, for 
all a, b e R and all =, f l e  C. Hence the fibre =-l(y) in age is the complex 
vector space spanned by the linearly independent vectors of the form 

1~ a~+ x~) 
where a~ e R and xx --> y. 

As one might expect, the above structure can also be reformulated in 
terms of a superselection rule in ag6. The mapping n partitions ag+ into 
mutually disjoint fibres n-~(y). Since the fibres are sub-spaces of age, for 
each y e M we can construct a projection operator F(y): 

FCy)* = F(y), FCy) 2 --- F(y) 
such that 

FCy) ..~e = n-~(Y) 
F(y)  F(y')  = F(y')  F(y)  = O, for y # y '  

Actually, since F(y) is a parametrised family of projection operators, its 
argument being a point y ~ M = R m (we assume that we have chosen a 
definite coordinate system in Rm), it is more correct to write it in differential 
notation, dF(y). In terms of the latter, we define the self-adjoint linear 
operator P 

0 = | y dF(y) 
M 

on age. Suppose now that 

(a) 0 is an observable; 
(b) 0 commutes with every observable. 

Then 0 defines a continuous superselection rule on age. It no longer makes 
sense to superpose elements in age belonging to different superselection 
sectors--i.e, to different fibres. 
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It should, perhaps, be stated explicitly that our fibre bundles are obtained 
from a vector space with an additional topological structure by a continuous 
mapping vis-a-vis this topological structure onto another topological space. 
Once this mapping is effected, the vector space structure is discarded except 
within each fibre. To emphasise this point, we will denote such bundles 
by {zc, M}. 

Landau Excitations in One Dimension 
In one dimension, rotations do not exist, p and v take values on the real 

line, an irreducible representation is denoted by a real number p, and 
equation (2) is replaced by 

E '  = E(p) + pv (8) 

where, if we disregard reflections, it is no longer necessary to take the 
absolute value of p in E(p). If  p > 0, E '  is a monotonically increasing 
function of v. I f  p < 0, E '  decreases monotically with p. In either case, 
equation (8) has a unique solution in v for given p, E and E', unlike 
equation (2). 

Let ~ be the direct integral of these representations defined by the 
Lebesgue measure on the realp-line. We take ~ to be the total space. Next, 
we take for the base space the space of the boosts, i.e. the real line 
- ~  < v < ~o. Finally, we define the mapping zc: ar e -+ R as follows:'~ 
rc-X(v) is the vector space spanned by the vectors 

[p,E(p)+pv), -oo < p <  oo 

It is immediately seen that: 

(i) All p-values occur (and therefore localised states exist) in every 
fibre. 

(ii) zc is a projection, i.e. two fibres rt-l(va) and rc-l(v2) either have no 
element in common or else are identical. 

(iii) Every fibre is invariant under space and time translations. 
(iv) The boosts G(u) act as follows on the fibres: 

C(u) =  -l(u + v) 

Hence the bundle (Tr, ~} carries a realisation of the Galilei group which is 
linear in space and time translations but non-linear in the boosts. The 
notion of  an energy spectrum is well defined in (re, R} and localisable states 
exist in every fibre. The bundle {re, ~} gives a complete heuristic solution 
of  the problem of the mathematical structure of Landau excitations in one 
dimension. 

Concluding Remarks 
In three dimensions, the above heuristic method fails because equation (2) 

does not admit of a unique solutiqn for v for given E', E(p) and p. A more 

t Observe that this is induced by the mapping ~ x ~ -+ R, where ~ x R is the space 
of Co, E) which is projected onto R, the space of the boosts. 
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rigorous mathematical treatment is required before this problem can be 
satisfactorily resolved. In this context, it is worth pointing out that a state 
with a sharp value of the energy for a given momentum is not a normalisable 
state in the direct integral representation. I t  seems that just as the require- 
ment of  localisability forces one to abandon irreducibility, the requirement 
of  normalisability will compel one to introduce a width, i.e. a finite lifetime 
for the Landau excitations. 

A rigorous investigation of the mathematical structure of  the Landau 
excitations appears to be interesting both from the physical and the 
mathematical viewpoints. 
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